Uniform rotundity in every direction of Orlicz function spaces equipped with the \(p\)-Amemiya norm
From MaRDI portal
Publication:1736925
DOI10.1007/s13348-018-0220-3zbMath1420.46016OpenAlexW2789293127WikidataQ130111993 ScholiaQ130111993MaRDI QIDQ1736925
Publication date: 26 March 2019
Published in: Collectanea Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13348-018-0220-3
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Geometry and structure of normed linear spaces (46B20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uniform rotundity in every direction of Orlicz-Sobolev spaces
- The fixed point property of Orlicz sequence spaces equipped with the \(p\)-Amemiya norm
- Non-squareness properties of Orlicz spaces equipped with the \(p\)-Amemiya norm
- Monotonicity properties and dominated best approximation problems in Orlicz spaces equipped with the \(p\)-Amemiya norm
- Complex rotundity of Orlicz sequence spaces equipped with the \(p\)-Amemiya norm
- Orlicz spaces and modular spaces
- Basic theory of \(p\)-Amemiya norm in Orlicz spaces (\(1\leq p\leq \infty\)): Extreme points and rotundity in Orlicz spaces endowed with these norms
- Complex extreme points and complex rotundity in Orlicz function spaces equipped with the \(p\)-Amemiya norm
- Strongly extreme points in Orlicz spaces equipped with the \(p\)-Amemiya norm
- Packing constant in Orlicz sequence spaces equipped with the \(p\)-Amemiya norm
- \(M\)-constants, Dominguez-Benavides coefficient, and weak fixed point property in Orlicz sequence spaces equipped with the \(p\)-Amemiya norm
- Geometric properties of Orlicz spaces equipped with \(p\)-Amemiya norms − results and open questions
- Rotundity in Lebesgue-Bochner Function Spaces
- Uniform rotundity of Orlicz function spaces equipped with the ‐Amemiya norm
- The best possible net and the best possible cross-section of a set in a normed space
- Normed Linear Spaces that are Uniformly Convex in Every Direction
- Amemiya norm equals Orlicz norm in general
This page was built for publication: Uniform rotundity in every direction of Orlicz function spaces equipped with the \(p\)-Amemiya norm