Generalizations of Szőkefalvi Nagy and Chebyshev inequalities with applications in spectral graph theory
DOI10.1016/j.amc.2017.05.064zbMath1426.26045OpenAlexW2734385320WikidataQ114310075 ScholiaQ114310075MaRDI QIDQ1740047
Boris Furtula, Ivan Gutman, Igor Ž. Milovanović, Kinkar Chandra Das, Emina I. Milovanović
Publication date: 29 April 2019
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2017.05.064
topological indexChebyshev inequalityZagreb indicesdegree-based topological indexSzőkefalvi-Nagy inequality
Graphs and linear algebra (matrices, eigenvalues, etc.) (05C50) Inequalities for sums, series and integrals (26D15)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some properties of the reformulated Zagreb indices
- A note on the first reformulated Zagreb index
- On reformulated Zagreb indices
- Spektren endlicher Grafen
- New upper bounds on Zagreb indices
- On diameter and inverse degree of a graph
- Bounds for eigenvalues using traces
- On the spectral radius of graphs
- A forgotten topological index
- Zagreb indices of graphs
- On structure-sensitivity of degree-based topological indices
- The Minkowski and Tchebychef inequalities as functions of the index set
- Sharp bounds for the first Zagreb index and first Zagreb coindex
- Spectral Radius and Degree Sequence
- Some better bounds on the variance with applications
This page was built for publication: Generalizations of Szőkefalvi Nagy and Chebyshev inequalities with applications in spectral graph theory