Approximation result for non-autonomous and non-local rock fracture models
DOI10.1007/s13160-017-0287-3zbMath1489.86010OpenAlexW2782752413MaRDI QIDQ1742880
Emile Franc Doungmo Goufo, Amos S. Kubeka
Publication date: 12 April 2018
Published in: Japan Journal of Industrial and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13160-017-0287-3
integro-differential equationsevolution systemdiscrete modelnon-local modelforward propagatornon-autonomous rock fracture
Integro-partial differential equations (45K05) One-parameter semigroups and linear evolution equations (47D06) Seismology (including tsunami modeling), earthquakes (86A15) Groups and semigroups of linear operators (47D03) Theories of fracture and damage (74A45) Fractional ordinary differential equations (34A08)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Stability and convergence analysis of a variable order replicator-mutator process in a moving medium
- Honesty in discrete, nonlocal and randomly position structured fragmentation model with unbounded rates
- A mathematical analysis of fractional fragmentation dynamics with growth
- Global solvability of a continuous model for nonlocal fragmentation dynamics in a moving medium
- Linear non-autonomous Cauchy problems and evolution semigroups
- Semigroups of linear operators and applications to partial differential equations
- Sommes d'opérateurs linéaires et équations différentielles opérationnelles
- One-Parameter Semigroups for Linear Evolution Equations
- Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications
This page was built for publication: Approximation result for non-autonomous and non-local rock fracture models