Identities for the multiple zeta (star) values
From MaRDI portal
Publication:1743207
DOI10.1007/s00025-018-0761-5zbMath1432.11125arXiv1702.03868OpenAlexW2962828563MaRDI QIDQ1743207
Publication date: 13 April 2018
Published in: Results in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1702.03868
Other functions defined by series and integrals (33E20) Multiple sequences and series (40B05) Multiple Dirichlet series and zeta functions and multizeta values (11M32)
Related Items (9)
Explicit formulas of alternating multiple zeta star values \(\zeta^\star(\bar{1}, \{1\}_{m-1}, \bar{1})\) and \(\zeta^\star(2, \{1\}_{m-1}, \bar{1})\) ⋮ Explicit evaluation of some integrals involving polylogarithm functions ⋮ Some results on multiple polylogarithm functions and alternating multiple zeta values ⋮ Another proof of Kaneko–Ohno’s duality formula for multiple zeta star values ⋮ Multiple zeta functions and polylogarithms over global function fields ⋮ A weighted sum formula for alternating multiple zeta-star values ⋮ Explicit formulas of some mixed Euler sums via alternating multiple zeta values ⋮ Evaluations of Euler-type sums of weight \(\le 5\) ⋮ Evaluations of some Euler-Apéry-type series
Cites Work
- Unnamed Item
- Unnamed Item
- Identities among restricted sums of multiple zeta values
- Another expression of the restricted sum formula of multiple zeta values
- Evaluation of the multiple zeta values \(\zeta(2,\ldots,2,3,2,\ldots,2)\)
- Sum formulas and duality theorems of multiple zeta values
- Multiple zeta values and Euler sums
- Special values of generalized polylogarithms
- A restricted sum formula among multiple zeta values
- Multiple harmonic series
- A generalization of the duality and sum formulas on the multiple zeta values
- Triple sums and the Riemann zeta function
- The algebra of multiple harmonic series
- Evaluations of \(k\)-fold Euler/Zagier sums: a compendium of results for arbitrary \(k\)
- Evaluation of triple Euler sums
- On \(q\)-analogs of some families of multiple harmonic sums and multiple zeta star value identities
- Another proof of Zagier's evaluation formula of the multiple zeta values \(\zeta (2, \dots , 2, 3, 2, \dots , 2)\)
- ON A KIND OF DUALITY OF MULTIPLE ZETA-STAR VALUES
- Algebraic setup of non-strict multiple zeta values
- ON THE DUALITY FOR MULTIPLE ZETA-STAR VALUES OF HEIGHT ONE
- Euler Sums and Contour Integral Representations
- Experimental Evaluation of Euler Sums
- Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth
- Special values of multiple polylogarithms
- Explicit evaluation of Euler sums
- Integrals of logarithmic functions and alternating multiple zeta values
- New properties of multiple harmonic sums modulo 𝑝 and 𝑝-analogues of Leshchiner’s series
This page was built for publication: Identities for the multiple zeta (star) values