The crepant transformation conjecture for toric complete intersections
DOI10.1016/j.aim.2017.11.017zbMath1394.14036arXiv1410.0024OpenAlexW1567930393WikidataQ123014493 ScholiaQ123014493MaRDI QIDQ1744568
Hiroshi Iritani, Yunfeng Jiang, Tom Coates
Publication date: 23 April 2018
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1410.0024
mirror symmetryquantum cohomologyMellin-Barnes methodFourier-Mukai transformationtoric Deligne-Mumford stackscrepant resolution conjecture
Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) (14N35) Gromov-Witten invariants, quantum cohomology, Frobenius manifolds (53D45) Generalizations (algebraic spaces, stacks) (14A20) McKay correspondence (14E16)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(K\)-theoretic and categorical properties of toric Deligne-Mumford stacks
- On the better behaved version of the GKZ hypergeometric system
- The genus zero Gromov-Witten invariants of the symmetric square of the plane
- Ruan's conjecture on singular symplectic flops of mixed type
- Quantum cohomology of the Springer resolution
- The quantum differential equation of the Hilbert scheme of points in the plane
- The orbifold cohomology ring of simplicial toric stack bundles
- Wall-crossings in toric Gromov-Witten theory. I: Crepant examples
- An integral structure in quantum cohomology and mirror symmetry for toric orbifolds
- A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory.
- Mellin--Barnes integrals as Fourier--Mukai transforms
- Quantum Riemann-Roch, Lefschetz and Serre
- Orbifold quasimap theory
- Flops, motives, and invariance of quantum rings
- Computing genus-zero twisted Gromov-Witten invariants
- Hurwitz-Hodge integrals, the \(E_6\) and \(D_4\) root systems, and the crepant resolution conjecture
- Singular symplectic flops and Ruan cohomology
- Orbifold quantum Riemann-Roch, Lefschetz and Serre
- The quantum McKay correspondence for polyhedral singularities
- The moment map and equivariant cohomology
- Equivariant cohomology, Koszul duality, and the localization theorem
- Variation of geometric invariant theory quotients. (With an appendix: ``An example of a thick wall by Nicolas Ressayre)
- A new cohomology theory of orbifold
- Torus actions on symplectic manifolds
- Crepant resolutions and open strings
- Quantum cohomology and periods
- Quantum cohomology and crepant resolutions: a conjecture
- Discriminants, resultants, and multidimensional determinants
- A mirror theorem for the mirror quintic
- Smooth toric Deligne-Mumford stacks
- Ruan's conjecture and integral structures in quantum cohomology
- Invariance of Gromov–Witten theory under a simple flop
- The orbifold Chow ring of toric Deligne-Mumford stacks
- A mirror theorem for toric stacks
- Gromov-Witten theory of Deligne-Mumford stacks
- Hodge theoretic aspects of mirror symmetry
- B-Type D-Branes in Toric Calabi–Yau Varieties
- Symplectic Birational Geometry
- Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties
- The Crepant Resolution Conjecture for Three-Dimensional Flags Modulo an Involution
- Logarithmic Frobenius manifolds, hypergeometric systems and quantum 𝒟-modules
- Invariance of quantum rings under ordinary flops II: A quantum Leray–Hirsch theorem
- Equivariant Gromov - Witten Invariants
- THE COHOMOLOGICAL CREPANT RESOLUTION CONJECTURE FOR ℙ(1,3,4,4)
- Computing certain Gromov-Witten invariants of the crepant resolution of ℙ(1, 3, 4, 4)
- The orbifold quantum cohomology of $\mathbb{C}^{2}/\mathbb{Z}_3$ and Hurwitz-Hodge integrals
- CHEN–RUAN COHOMOLOGY OF ADE SINGULARITIES
- Geometric invariant theory and flips
- On the crepant resolution conjecture in the local case