Splitting ultra-metrics by \(T_{0}\)-ultra-quasi-metrics
DOI10.1016/j.topol.2018.03.003zbMath1390.54030OpenAlexW2794028246WikidataQ130139737 ScholiaQ130139737MaRDI QIDQ1744597
Francky Mathieu Solofomananirina Tiantsoa, Hans-Peter A. Künzi
Publication date: 23 April 2018
Published in: Topology and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.topol.2018.03.003
splittingpartial orderGO-spaceultra-metric spaceSzpilrajn's theoremquasi-pseudometric spaceinterval conditionproducingRobinsonian
Metric spaces, metrizability (54E35) Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces (54F05)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Partially ordered metric spaces produced by \(T_{0}\)-quasi-metrics
- An optimal algorithm to recognize Robinsonian dissimilarities
- Splitting metrics by \(T_0\)-quasi-metrics
- Minimal superior ultrametrics under order constraint
- Monotone metric spaces
- Chain development of metric compacts
- Ordnungsfähigkeit total-diskontinuierlicher Räume
This page was built for publication: Splitting ultra-metrics by \(T_{0}\)-ultra-quasi-metrics