Shifted Hecke insertion and \(K\)-theory of \(OG(n,2n+1)\)
From MaRDI portal
Publication:1745104
zbMath1384.05159MaRDI QIDQ1745104
Adam Keilthy, Shuqi Zhou, Rebecca Patrias, Zachary Hamaker, Yinuo Zhang, Lillian Webster
Publication date: 20 April 2018
Published in: Séminaire Lotharingien de Combinatoire (Search for Journal in Brave)
Full work available at URL: http://www.mat.univie.ac.at/~slc/wpapers/FPSAC2017/14%20Hamaker%20Keilthy%20Patrias%20Webster%20Zhang%20Zhou.html
Combinatorial aspects of partitions of integers (05A17) Symmetric functions and generalizations (05E05) Grassmannians, Schubert varieties, flag manifolds (14M15) Classical problems, Schubert calculus (14N15)
Cites Work
- Unnamed Item
- Unnamed Item
- \(K\)-theory of minuscule varieties
- \(K\)-theoretic analogues of factorial Schur \(P\)- and \(Q\)-functions
- Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm
- Combinatorics of \(K\)-theory via a \(K\)-theoretic Poirier-Reutenauer bialgebra
- The shifted Poirier-Reutenauer algebra
- Shifted tableaux, Schur q-functions, and a conjecture of R. Stanley
- Shifted Hecke insertion and the \(K\)-theory of \(\mathrm{OG}(n,2n+1)\)
- \(K\)-theoretic Schubert calculus for \(OG(n,2n+1)\) and jeu de taquin for shifted increasing tableaux
- Stable Grothendieck polynomials and \(K\)-theoretic factor sequences
- Dual Filtered Graphs
- Pieri rules for the K-theory of cominuscule Grassmannians
- Combinatorial Hopf Algebras and K-Homology of Grassmanians