On a renormalizable class of gauge fixings for the gauge invariant operator \(A_{\min}^2\)
From MaRDI portal
Publication:1745600
DOI10.1016/J.AOP.2018.01.009zbMath1384.81070arXiv1712.04073OpenAlexW2772329728MaRDI QIDQ1745600
M. S. Guimaraes, D. M. van Egmond, G. Peruzzo, H. C. Toledo, Marcio A. L. Capri, Rodrigo C. Terin, Silvio Paolo Sorella, Ozório Holanda
Publication date: 18 April 2018
Published in: Annals of Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1712.04073
Yang-Mills and other gauge theories in quantum field theory (81T13) Nonperturbative methods of renormalization applied to problems in quantum field theory (81T16)
Related Items (2)
Study of a gauge invariant local composite fermionic field ⋮ The universal character of Zwanziger's horizon function in Euclidean Yang-Mills theories
Cites Work
- Every gauge orbit passes inside the Gribov horizon
- Three loop \(\overline{MS}\) renormalization of the Curci-Ferrari model and the dimension two BRST invariant composite operator in QCD
- The anomalous dimension of the composite operator \(A^2\) in the Landau gauge
- THE STUECKELBERG FIELD
- Algebraic Renormalization
- Polynomial form of the Stueckelberg model
This page was built for publication: On a renormalizable class of gauge fixings for the gauge invariant operator \(A_{\min}^2\)