Unfolded Seiberg-Witten Floer spectra. I: Definition and invariance
From MaRDI portal
Publication:1746381
DOI10.2140/gt.2018.22.2027zbMath1395.57040arXiv1604.08240OpenAlexW2344650794WikidataQ129990923 ScholiaQ129990923MaRDI QIDQ1746381
Tirasan Khandhawit, Hirofumi Sasahira, Jianfeng Lin
Publication date: 25 April 2018
Published in: Geometry \& Topology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1604.08240
Related Items
Positive scalar curvature and homology cobordism invariants, Low-regularity Seiberg-Witten moduli spaces on manifolds with boundary, KHOVANOV SPECTRA FOR TANGLES, Unfolded Seiberg-Witten Floer spectra. II: Relative invariants and the gluing theorem
Cites Work
- Unnamed Item
- Unnamed Item
- Equivariant stable homotopy theory. With contributions by J. E. McClure
- Seiberg-Witten monopoles on Seifert fibered spaces
- Seiberg-Witten Floer stable homotopy type of three-manifolds with \(b_1=0\)
- A stable cohomotopy refinement of Seiberg-Witten invariants. II
- Holomorphic disks and three-manifold invariants: properties and applications
- An instanton-invariant for 3-manifolds
- Monopoles and four-manifolds
- Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg-Witten moduli spaces
- \(\operatorname{Pin}(2)\)-equivariant \(\mathrm{KO}\)-theory and intersection
- On the intersection forms of spin four-manifolds with boundary
- Pin(2)-Equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture
- Connected Simple Systems and The Conley Index of Isolated Invariant Sets
- A refinement of the Conley index and an application to the stability of hyperbolic invariant sets
- On the Homotopy Index for Infinite-Dimensional Semiflows
- Spectral asymmetry and Riemannian Geometry. I
- Geometric Invariants for Seifert Fibred 3-Manifolds
- Homotopical dynamics: suspension and duality
- Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations
- Monopole equation and the \(\frac{11}{8}\)-conjecture