Higgs varieties and fundamental groups
From MaRDI portal
Publication:1747940
DOI10.1016/j.geomphys.2018.02.002zbMath1388.14061OpenAlexW2790802717MaRDI QIDQ1747940
Beatriz Graña Otero, Ugo Bruzzo
Publication date: 27 April 2018
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.geomphys.2018.02.002
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Restricting Higgs bundles to curves
- On the S-fundamental group scheme
- Profinite number theory
- Semistable and numerically effective principal (Higgs) bundles
- The fundamental group-scheme
- Higgs bundles and local systems
- Local systems on proper algebraic \(V\)-manifolds
- The proalgebraic completion of rigid groups.
- Bruzzo's conjecture
- Monodromy group for a strongly semistable principal bundle over a curve
- Semistability vs. nefness for (Higgs) vector bundles
- Ample vector bundles
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Tensor categories: A selective guided tour
- On the S-fundamental group scheme. II
- NUMERICALLY FLAT HIGGS VECTOR BUNDLES
This page was built for publication: Higgs varieties and fundamental groups