\(r\)-almost Newton-Ricci solitons immersed into a Riemannian manifold
From MaRDI portal
Publication:1748325
DOI10.1016/j.jmaa.2018.04.026zbMath1388.53041OpenAlexW2797312807WikidataQ115345979 ScholiaQ115345979MaRDI QIDQ1748325
Antonio W. Cunha, Eudes Leite de Lima, Henrique Fernandes de Lima
Publication date: 9 May 2018
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2018.04.026
Einstein manifoldslocally symmetric spacesspace formstotally geodesic hypersurfaces\(r\)-almost Newton-Ricci solitons
Related Items
k-ALMOST NEWTON-EINSTEIN SOLITONS ON HYPERSURFACES IN GENERALIZED SASAKIAN SPACE FORMS, Immersions of \(r\)-almost Yamabe solitons into Riemannian manifolds, On scalar curvature of \(r\)-almost Yamabe solitons, On scalar curvature of \(r\)-almost Newton-Ricci solitons, Unnamed Item, \(r\)-almost Newton-Ricci solitons on Legendrian submanifolds of Sasakian space forms, Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Ricci-Bourguignon flow
- On complete gradient shrinking Ricci solitons
- Complete foliations of space forms by hypersurfaces
- Four-dimensional D'Atri-Einstein spaces are locally symmetric
- Metrics with nonnegative isotropic curvature
- Three-manifolds with positive Ricci curvature
- Rigidity of Einstein manifolds with positive scalar curvature
- Local rigidity theorems for minimal hypersurfaces
- Minimal varieties in Riemannian manifolds
- Einstein manifolds with nonnegative isotropic curvature are locally symmetric
- Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds
- SOME GEOMETRIC ANALYSIS ON GENERIC RICCI SOLITONS
- Some characterizations for compact almost Ricci solitons
- Ricci almost solitons
- Recent Progress on Ricci Solitons
- Hypersurfaces of constant higher order mean curvature in warped products
- Complete shrinking Ricci solitons have finite fundamental group