Repeated-root constacyclic codes over \(\mathbb{F}_2 + u \mathbb{F}_2 + v \mathbb{F}_2 + u v \mathbb{F}_2\)
From MaRDI portal
Publication:1748388
DOI10.1016/j.jpaa.2017.11.007zbMath1386.94108OpenAlexW2769494891MaRDI QIDQ1748388
Publication date: 11 May 2018
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jpaa.2017.11.007
Related Items (4)
Constacyclic codes of length \(8p^s\) over \(\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}\) ⋮ Construction of cyclic DNA codes over the ring \(\mathbb{Z}_4 [u / \langle u^2 - 1 \rangle\) based on the deletion distance] ⋮ REPEATED-ROOT CONSTACYCLIC CODES OVER F3+uF3+uvF3 ⋮ Classes of constacyclic codes of length \(p^s\) over the ring \(\mathbb F_{p^m}+u \mathbb F_{p^m}+v\mathbb F_{p^m}+uv\mathbb F_{p^m}\)
Cites Work
- \((1 + v)\)-constacyclic codes over \(\mathbb F_2 + u\mathbb F_2 + v\mathbb F_2 + uv\mathbb F_2\)
- Negacyclic codes of length \(2p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m}\)
- Constacyclic codes of length \(p^s\) over \(\mathbb F_{p^m} + u\mathbb F_{p^m}\)
- Self-dual codes over \(\mathbb F_2 + u\mathbb F_2 + v\mathbb F_2 + uv\mathbb F_2\)
- Negacyclic self-dual codes over finite chain rings
- A note on cyclic codes over \(\mathrm{GR}(p^{2},m)\) of length \(p^{k}\)
- A note on negacyclic self-dual codes over \(\mathbb Z_{2^{a}}\)
- Some constacyclic self-dual codes over the integers modulo \(2^m\)
- Linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\)
- Cyclic codes over \(\text{GR}(p^2,m)\) of length \(p^k\)
- A note on cyclic codes over GR\((p^2,m)\) of length \(p^k\)
- Dual and self-dual negacyclic codes of even length over \(\mathbb Z_{2^a}\)
- Cyclic codes over \({\mathbb{F}}_2 + u{\mathbb{F}}_2 + v{\mathbb{F}}_2 + uv{\mathbb{F}}_2\)
- Repeated-root cyclic and negacyclic codes over a finite chain ring
- Cyclic codes over \(\mathbb Z_4\) of even length
- Negacyclic Codes of Length<tex>$2^s$</tex>Over Galois Rings
- Cyclic and Negacyclic Codes Over Finite Chain Rings
- Duality for modules over finite rings and applications to coding theory
- The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes
- Negacyclic and cyclic codes over Z/sub 4/
- Negacyclic codes over Z/sub 4/ of even length
- Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$
- Unnamed Item
This page was built for publication: Repeated-root constacyclic codes over \(\mathbb{F}_2 + u \mathbb{F}_2 + v \mathbb{F}_2 + u v \mathbb{F}_2\)