Selection of an interval for variable shape parameter in approximation by radial basis functions
From MaRDI portal
Publication:1750810
DOI10.1155/2016/1397849zbMath1422.65029OpenAlexW2517582213MaRDI QIDQ1750810
Publication date: 23 May 2018
Published in: Advances in Numerical Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2016/1397849
Spectral, collocation and related methods for boundary value problems involving PDEs (65N35) Numerical interpolation (65D05) Interpolation in approximation theory (41A05)
Related Items
Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization ⋮ Numerical solution to coupled Burgers' equations by Gaussian-based Hermite collocation scheme ⋮ The sample solution approach for determination of the optimal shape parameter in the multiquadric function of the Kansa method ⋮ Ghost-point based radial basis function collocation methods with variable shape parameters
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation
- The golden section search algorithm for finding a good shape parameter for meshless collocation methods
- A random variable shape parameter strategy for radial basis function approximation methods
- Multiquadric and its shape parameter -- a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation
- Optimal constant shape parameter for multiquadric based RBF-FD method
- Improved accuracy of multiquadric interpolation using variable shape parameters
- Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations
- Method of approximate particular solutions for constant- and variable-order fractional diffusion models
- Stable computation of multiquadric interpolants for all values of the shape parameter
- Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method
- An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation
- On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method
- The parameter \(R^ 2\) in multiquadric interpolation
- On choosing ``optimal shape parameters for RBF approximation
- The Runge phenomenon and spatially variable shape parameters in RBF interpolation
- A new radial basis function for Helmholtz problems
- A meshless method of lines for the numerical solution of KdV equation using radial basis functions
- Numerical experiments on optimal shape parameters for radial basis functions