Lower bounds of Dirichlet eigenvalues for a class of finitely degenerate Grushin type elliptic operators
From MaRDI portal
Publication:1752117
DOI10.1016/S0252-9602(17)30098-XzbMath1399.35286OpenAlexW2758990454MaRDI QIDQ1752117
Yirui Duan, Hua Chen, Xin Hu, Hong-Ge Chen
Publication date: 25 May 2018
Published in: Acta Mathematica Scientia. Series B. (English Edition) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0252-9602(17)30098-x
Dirichlet eigenvaluesGrushin type operatorfinitely degenerate elliptic operatorsHormander's conditionsub-elliptic estimate
Related Items (5)
Upper bound estimates of eigenvalues for Hörmander operators on non-equiregular sub-Riemannian manifolds ⋮ Estimates of Dirichlet eigenvalues for degenerate \(\triangle_\mu\)-Laplace operator ⋮ The first Grushin eigenvalue on Cartesian product domains ⋮ Estimates for eigenvalues of a class of fourth order degenerate elliptic operators with a singular potential ⋮ Existence and multiplicity of solutions to Dirichlet problem for semilinear subelliptic equation with a free perturbation
This page was built for publication: Lower bounds of Dirichlet eigenvalues for a class of finitely degenerate Grushin type elliptic operators