Integral Ricci curvature bounds along geodesics for nonexpanding gradient Ricci solitons
From MaRDI portal
Publication:1759651
DOI10.1007/s10455-012-9312-6zbMath1269.53067OpenAlexW1985037469WikidataQ125997850 ScholiaQ125997850MaRDI QIDQ1759651
Peng Lu, Bo Yang, Bennett Chow
Publication date: 21 November 2012
Published in: Annals of Global Analysis and Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10455-012-9312-6
Geodesics in global differential geometry (53C22) Heat and other parabolic equation methods for PDEs on manifolds (58J35)
Cites Work
- Unnamed Item
- Unnamed Item
- Smooth metric measure spaces with non-negative curvature
- Maximum principles and gradient Ricci solitons
- On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below
- On complete gradient shrinking Ricci solitons
- Remarks on non-compact gradient Ricci solitons
- Strong uniqueness of the Ricci flow
- Complete gradient shrinking Ricci solitons have finite topological type
- Precise asymptotics of the Ricci flow neckpinch
- The existence of type II singularities for the Ricci flow on \(S^{n+1}\)
- Sharp logarithmic Sobolev inequalities on gradient solitons and applications
- On the parabolic kernel of the Schrödinger operator
- Entropy and reduced distance for Ricci expanders
- On gradient Ricci solitons
- Formal matched asymptotics for degenerate Ricci flow neckpinches