Fuzzy presubsets as non-idempotent and non-commutative classifications of subalgebras
DOI10.1016/j.fss.2011.06.005zbMath1268.03071OpenAlexW2054905872MaRDI QIDQ1759703
Publication date: 21 November 2012
Published in: Fuzzy Sets and Systems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.fss.2011.06.005
algebraic theory\(C^{\ast}\)-algebraquantaloidCauchy completionEilenberg-Moore categoryweak subobject classifiercharacteristic morphism(involutive) quantale(quasi-)presingleton(sub)monadcomplete De Morgan algebraquantale fuzzy presubsetquantale preordered setstable element of a quantaletruth arrow
Theory of fuzzy sets, etc. (03E72) Topoi (18B25) Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads (18C15) Quantales (06F07) Eilenberg-Moore and Kleisli constructions for monads (18C20) Generalizations of ordered sets (06A75)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A non-commutative and non-idempotent theory of quantale sets
- Categorical approaches to non-commutative fuzzy logic
- Topoi. The categorial analysis of logic. Rev. ed
- Fuzzy submonoids, fuzzy preorders and quasi-metrics
- Fuzzy sets and sheaves. I: Basic concepts
- Fuzzy sets and sheaves. II: Sheaf-theoretic foundations of fuzzy set theory with applications to algebra and topology
- Fuzzy topology. I: Neighborhood structure of a fuzzy point and Moore-Smith convergence
- Frame-fuzzy points and membership
- Triangular norms
- An essay on noncommutative topology
- A theory of quantal sets
- L-fuzzy sets
- An extension of the Galois theory of Grothendieck
- Tensor Products and Bimorphisms
- Sheaves and Boolean valued model theory
- On the quantisation of points
This page was built for publication: Fuzzy presubsets as non-idempotent and non-commutative classifications of subalgebras