Grüss-type and Ostrowski-type inequalities in approximation theory
DOI10.1007/s11253-011-0548-2zbMath1254.41011OpenAlexW2021065822MaRDI QIDQ1759949
Ioan Raşa, Heinz H. Gonska, Ana-Maria Acu
Publication date: 23 November 2012
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: http://dspace.nbuv.gov.ua/handle/123456789/166246
Bernstein operatorGrüss-type inequalityCauchy mean-value theoremconvolution-type operatorsHermite-Fejér interpolation operator
Inequalities in approximation (Bernstein, Jackson, Nikol'ski?-type inequalities) (41A17) Inequalities for sums, series and integrals (26D15) Approximation by positive operators (41A36)
Related Items (44)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A simple proof of A. F. Timan's theorem
- Ostrowski inequalities and moduli of smoothness
- Grüss' inequality for positive linear functionals
- A new estimate for the approximation of functions by Hermite-Fejer interpolation polynomials
- An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules
- On the rate of convergence of Hermite-Fejer interpolation polynomials
- Über einige Ungleichungen von Herrn G. Grüss
- The Ostrowski's integral inequality for Lipschitzian mappings and applications
- LACK OF INTERPOLATION OF LINEAR OPERATORS IN SPACES OF SMOOTH FUNCTIONS
- Ostrowski Type Inequalities
- A note on Grüss type inequalities via Cauchy's mean value theorem
- Improvement of some Ostrowski-Grüss type inequalities
- Über das Maximum des absoluten Betrages von \[ \frac 1{b-a}\int _a^bf(x)g(x)\,dx-\frac 1{(b-a)^2}\int _a^bf(x)\,dx\int _a^bg(x)\,dx. \ .]
- On an integral inequality
This page was built for publication: Grüss-type and Ostrowski-type inequalities in approximation theory