Grothendieck's nuclear operator theorem revisited with an application to \(p\)-null sequences
DOI10.1016/j.jfa.2012.08.010zbMath1301.47030OpenAlexW1979825837MaRDI QIDQ1760180
Publication date: 13 November 2012
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2012.08.010
Banach spacestensor productsapproximation propertyoperator idealnuclear operators\(\alpha\)-nuclear operators\(p\)-compactness\(p\)-null sequences
Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) Spaces of operators; tensor products; approximation properties (46B28)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A remark on the approximation of \(p\)-compact operators by finite-rank operators
- Density of finite rank operators in the Banach space of \(p\)-compact operators
- Subspaces and factor-spaces isomorphic to \(\ell _ p\) in tensor products and in the spaces of operators
- Complemented subspaces isomorphic to \(\ell_ p\) in tensor products and operator spaces
- Weak sequential completeness of Banach operator ideals
- Approximation properties AP\(_s\) and \(p\)-nuclear operators (the case \(0<s \leq 1\))
- On linear operators with \(p\)-nuclear adjoints
- Compact operators whose adjoints factor through subspaces of lp
- Compact operators which are defined bylp-spaces
- $p$-Convergent sequences and Banach spaces in which $p$-compact sets are $q$-compact
- Inner and outer inequalities with applications to approximation properties
- Approximation properties of orderp and the existence of non-p-nuclear operators withp-nuclear second adjoints
- Sous-espaces complémentés isomorphes à $c_0$ dans les produits tensoriels de Saphar.
- Operators whose adjoints are quasi p-nuclear
- Into isomorphisms in tensor products of Banach spaces
- Sur la réflexivité des produits tensoriels et les sous-espaces des produits tensoriels projectifs.
- OPERATORS THAT ARE NUCLEAR WHENEVER THEY ARE NUCLEAR FOR A LARGER RANGE SPACE
- The Approximation Property Does Not Imply the Bounded Approximation Property
- The ideal of $p$-compact operators and its maximal hull
- Produits tensoriels d'espaces de Banach et classes d'applications linéaires
- Produits tensoriels topologiques et espaces nucléaires
This page was built for publication: Grothendieck's nuclear operator theorem revisited with an application to \(p\)-null sequences