Numerical solutions of stochastic differential equations with piecewise continuous arguments under Khasminskii-type conditions

From MaRDI portal
Publication:1760810

DOI10.1155/2012/696849zbMath1251.65004OpenAlexW2117582198WikidataQ58907182 ScholiaQ58907182MaRDI QIDQ1760810

Ling Zhang, Minghui Song

Publication date: 15 November 2012

Published in: Journal of Applied Mathematics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1155/2012/696849




Related Items

The Convergence of Truncated Euler-Maruyama Method for Stochastic Differential Equations with Piecewise Continuous Arguments Under Generalized One-Sided Lipschitz ConditionA class of stochastic one-parameter methods for nonlinear SFDEs with piecewise continuous argumentsAnalysis and robust \(H_\infty\) control for systems of stochastic differential equations with piecewise constant argumentsCompensated split-step balanced methods for nonlinear stiff SDEs with jump-diffusion and piecewise continuous argumentsConvergence and stability of the one-leg θ method for stochastic differential equations with piecewise continuous argumentsConvergence and stability of stochastic theta method for nonlinear stochastic differential equations with piecewise continuous argumentsConvergence and stability of an explicit method for nonlinear stochastic differential equations with piecewise continuous argumentsConvergence and stability of the Milstein scheme for stochastic differential equations with piecewise continuous argumentsStrong convergence of the tamed Euler method for nonlinear hybrid stochastic differential equations with piecewise continuous argumentsConvergence and stability of modified partially truncated Euler-Maruyama method for stochastic differential equations with piecewise continuous argumentsConvergence and stability of the split-step theta method for stochastic differential equations with piecewise continuous argumentsConvergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments



Cites Work