Generalization of B.M. Levitan and M.G. Gasymov's solvability theorems to the case of indecomposable boundary conditions
DOI10.1134/S1064562412020342zbMath1258.34037OpenAlexW2047786347MaRDI QIDQ1761003
Ya. T. Sultanaev, Azamat M. Akhtyamov, Victor A. Sadovnichij
Publication date: 15 November 2012
Published in: Doklady Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s1064562412020342
Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) (34L40) Sturm-Liouville theory (34B24) Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators (34L20) Inverse problems involving ordinary differential equations (34A55) Linear boundary value problems for ordinary differential equations (34B05)
Cites Work
- Inverse problems for Sturm-Liouville operators with potentials in Sobolev spaces: uniform stability
- Generalizations of the Borg uniqueness theorem to the case of nonseparated boundary conditions
- Inverse problem for an operator pencil with nonseparated boundary conditions
- Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte
- Inverse eigenvalue problems for perturbed spherical Schrödinger operators
- Inverse oscillation theory for Sturm–Liouville problems with non-separated boundary conditions
This page was built for publication: Generalization of B.M. Levitan and M.G. Gasymov's solvability theorems to the case of indecomposable boundary conditions