A polynomial approach to Faltings's theorem
DOI10.1016/j.crma.2004.11.026zbMath1076.11041OpenAlexW2072404802MaRDI QIDQ1764104
Publication date: 23 February 2005
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2004.11.026
Jacobiangenusnumber of rational pointsMordell conjecturerank of Mordell-Weil groupFaltings theorempoints of small heightmodular heightVojta's method
Arithmetic ground fields for curves (14H25) Counting solutions of Diophantine equations (11D45) [https://portal.mardi4nfdi.de/w/index.php?title=+Special%3ASearch&search=%22Curves+of+arbitrary+genus+or+genus+%28%0D%0Ae+1%29+over+global+fields%22&go=Go Curves of arbitrary genus or genus ( e 1) over global fields (11G30)]
Cites Work
- Unnamed Item
- Finiteness theorems for abelian varieties over number fields.
- Siegel's theorem in the compact case
- Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes. II. (Lower bounds for normalized heights of subvarieties of Abelian varieties. II.)
- On alternative heights. III
- Counting in a conjecture of Lang
- Introduction to algebraic independence theory. With contributions from F. Amoroso, D. Bertrand, W. D. Brownawell, G. Diaz, M. Laurent, Yu. V. Nesterenko, K. Nishioka, P. Philippon, G. Rémond, D. Roy, M. Waldschmidt
This page was built for publication: A polynomial approach to Faltings's theorem