Non parametric mixture priors based on an exponential random scheme
From MaRDI portal
Publication:1766954
DOI10.1007/BF02511443zbMath1145.62322MaRDI QIDQ1766954
Publication date: 3 March 2005
Published in: Statistical Methods and Applications (Search for Journal in Brave)
Bernstein polynomialsdensity estimationmixture modelshierarchical modelsFeller operatorsnon-parametric Bayesian inference
Related Items (5)
Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparametric estimation of the density ⋮ Nonparametric Estimation of Mean Residual Life Function Using Scale Mixtures ⋮ Nonparametric Bayesian inference for multivariate density functions using Feller priors ⋮ A review of uncertainty quantification for density estimation ⋮ Nonparametric hierarchical Bayes analysis of binomial data via Bernstein polynomial priors
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On a class of Bayesian nonparametric estimates: I. Density estimates
- Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
- Korovkin-type approximation theory and its applications
- Posterior consistency of Dirichlet mixtures in density estimation
- Density Estimation With Confidence Sets Exemplified by Superclusters and Voids in the Galaxies
- Combining Minimax Shrinkage Estimators
- Approximating distributions of random functionals of Ferguson-Dirichlet priors
- Consistency of Bernstein Polynomial Posteriors
- Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models
- Bayesian Density Estimation and Inference Using Mixtures
- A Bayesian Method for Combining Results from Several Binomial Experiments
- Random Bernstein Polynomials
This page was built for publication: Non parametric mixture priors based on an exponential random scheme