Duality and comparison for logarithmic de Rham complexes with respect to free divisors.
DOI10.5802/aif.2089zbMath1089.32003arXivmath/0411045OpenAlexW2531211027MaRDI QIDQ1774107
Francisco Javier Calderón Moreno, Luis Narváez-Macarro
Publication date: 29 April 2005
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0411045
Sheaves of differential operators and their modules, (D)-modules (32C38) de Rham cohomology and algebraic geometry (14F40) Global theory of complex singularities; cohomological properties (32S20) Monodromy; relations with differential equations and (D)-modules (complex-analytic aspects) (32S40)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Logarithmic de Rham complexes and vanishing theorems
- Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
- Logarithmic cohomology of the complement of a plane curve
- A duality property for complex Lie algebroids
- Equations différentielles à points singuliers réguliers
- On the Homological Dimension of a Der-Free Hypersurface.
- Logarithmic differential operators and logarithmic de rham complexes relative to a free divisor
- La théorie du polynôme de Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer
- Duality for Lie-Rinehart algebras and the modular class
- Logarithmic Comparison Theorem and some Euler homogeneous free divisors
- Cohomology of the complement of a free divisor
- On meromorphic functions defined by a differential system of order $1$
- Differential Forms on General Commutative Algebras
This page was built for publication: Duality and comparison for logarithmic de Rham complexes with respect to free divisors.