Weighted BMO and discrete time hedging within the Black-Scholes model
From MaRDI portal
Publication:1775518
DOI10.1007/s00440-004-0389-0zbMath1067.60027OpenAlexW2037269023WikidataQ110038067 ScholiaQ110038067MaRDI QIDQ1775518
Publication date: 3 May 2005
Published in: Probability Theory and Related Fields (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00440-004-0389-0
General theory of stochastic processes (60G07) Derivative securities (option pricing, hedging, etc.) (91G20) Stochastic integrals (60H05)
Related Items
A scaling limit for utility indifference prices in the discretised Bachelier model ⋮ Interpolation and approximation in \(L_{2}(\gamma )\) ⋮ Weighted bounded mean oscillation applied to backward stochastic differential equations ⋮ Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces ⋮ Maximal inequalities and some applications ⋮ Sharp maximal estimates for BMO martingales ⋮ Stochastic moment problem and hedging of generalized Black-Scholes options ⋮ Super-replication with fixed transaction costs ⋮ Sharp Lorentz-norm estimates for BMO martingales ⋮ Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs ⋮ On an approximation problem for stochastic integrals where random time nets do not help ⋮ On fractional smoothness and \(L_{p}\)-approximation on the Gaussian space
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Une définition faible de BMO. (A weak definition of BMO)
- Limit distributions for the error in approximations of stochastic integrals
- Distribution function inequalities for martingales
- Weighted norm inequalities for martingales
- Continuous exponential martingales and BMO
- Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times
- Quelques inégalités concernant les martingales
- $BMO_ψ$-spaces and applications to extrapolation theory
- Quantitative approximation of certain stochastic integrals
- Discrete time hedging errors for options with irregular payoffs