Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring
From MaRDI portal
Publication:1775567
DOI10.1016/J.JNT.2005.01.003zbMath1073.11068OpenAlexW2086054319WikidataQ57937564 ScholiaQ57937564MaRDI QIDQ1775567
Nigel P. Byott, Bouchaïb Sodaïgui
Publication date: 4 May 2005
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2005.01.003
Related Items (11)
Relative Galois module structure of octahedral extensions ⋮ On the restricted Hilbert-Speiser and Leopoldt properties ⋮ Realizable classes of nonabelian extensions of order \(p^3\) ⋮ Realizable Galois module classes over the group ring for non abelian extensions ⋮ Hopf-Galois module structure of tame biquadratic extensions ⋮ On realizable Galois module classes by the inverse different ⋮ On realizable Galois module classes and Steinitz classes of nonabelian extensions ⋮ Realizable classes of metacylic extensions of degree \(lm\) ⋮ Note on the rings of integers of certain tame 2-Galois extensions over a number field ⋮ CLASSES DE STEINITZ D'EXTENSIONS NON ABÉLIENNES À GROUPE DE GALOIS D'ORDRE 16 OU EXTRASPÉCIAL D'ORDRE 32 ET PROBLÈME DE PLONGEMENT ⋮ Classes réalisables d'extensions non abéliennes
Cites Work
- On Fröhlich's conjecture for rings of integers of tame extensions
- ``Galois module structure of quaternion extensions of degree 8
- Steinitz classes of relative Galois extensions of 2-power degree and embedding problems
- Realizable classes by non-abelian metacyclic extensions and Stickelberger elements
- Galois module structure of elementary abelian extensions
- Realizable classes of tetrahedral extensions
- Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8
- Galois module structure of abelian extensions.
- Realizable Galois module classes for tetrahedral extensions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring