Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions
DOI10.1016/j.matpur.2004.09.013zbMath1162.35316OpenAlexW2077054732MaRDI QIDQ1775757
Dmitry Golovaty, Doina Cioranescu, Leonid Berlyand
Publication date: 4 May 2005
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.matpur.2004.09.013
Statistical mechanics of crystals (82D25) Variational methods for second-order elliptic equations (35J20) Homogenization in context of PDEs; PDEs in media with periodic structure (35B27) Homogenization applied to problems in fluid mechanics (76M50)
Related Items (9)
Cites Work
- Liquid crystals with variable degree of orientation
- Non-homogeneous media and vibration theory
- Averaging the diffusion equation in a porous medium with weak absorption
- Homogenized Non-Newtonian Viscoelastic Rheology of a Suspension of Interacting Particles in a Viscous Newtonian Fluid
- Ginzburg-Landau vortices
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions