Testing equality of regression coefficients in heteroscedastic normal regression models
From MaRDI portal
Publication:1776858
DOI10.1016/j.jspi.2003.12.016zbMath1062.62047OpenAlexW2018805755MaRDI QIDQ1776858
Publication date: 12 May 2005
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2003.12.016
Linear regression; mixed models (62J05) Hypothesis testing in multivariate analysis (62H15) Bayesian inference (62F15)
Related Items (13)
Training samples in objective Bayesian model selection. ⋮ Prior distributions for objective Bayesian analysis ⋮ Objective Bayesian methods for one-sided testing ⋮ On intrinsic priors for nonnested models ⋮ A computational approach test for comparing two linear regression models with unequal variances ⋮ A fiducial p-value approach for comparing heteroscedastic regression models ⋮ A consistent on‐line Bayesian procedure for detecting change points ⋮ Accounting for uncertainty in heteroscedasticity in nonlinear regression ⋮ A Bayesian joinpoint regression model with an unknown number of break-points ⋮ Objective Testing Procedures in Linear Models: Calibration of the p‐values ⋮ Objective priors for hypothesis testing in one‐way random effects models ⋮ A Parametric Bootstrap Test for Comparing Heteroscedastic Regression Models ⋮ Bayes Factors for Comparison of Restricted Simple Linear Regression Coefficients
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Statistical decision theory and Bayesian analysis. 2nd ed
- Default Bayesian analysis of the Behrens-Fisher problem
- A default Bayesian test for the number of components in a mixture
- The Intrinsic Bayes Factor for Model Selection and Prediction
- Tests of Equality Between Sets of Coefficients in Two Linear Regressions
- Bayesian model selection methods for nonnested models
- An Approximate Test for Comparing Heteroscedastic Regression Models
- Straight Lines with a Change-Point: A Bayesian Analysis of Some Renal Transplant Data
- Use of the Chow Test under Heteroscedasticity
- A Bayesian approach to inference about a change-point in a sequence of random variables
- Some Further Evidence on the Use of the Chow Test under Heteroskedasticity
- Bayesian Inference Under Partial Prior Information
- An Intrinsic Limiting Procedure for Model Selection and Hypotheses Testing
- Methods for Default and Robust Bayesian Model Comparison: The Fractional Bayes Factor Approach
- Bayesian analysis of a three-component hierarchical design model
- An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias
- Objective Bayesian Variable Selection
This page was built for publication: Testing equality of regression coefficients in heteroscedastic normal regression models