Minimax multivariate empirical Bayes estimators under multicollinearity
DOI10.1016/j.jmva.2004.02.018zbMath1066.62014OpenAlexW2055208440MaRDI QIDQ1776877
Tatsuya Kubokawa, Muni S. Srivastava
Publication date: 12 May 2005
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmva.2004.02.018
Multivariate normal distributionEmpirical Bayes estimatorRidge regression estimatorMulticollinearityMultivariate linear regression model
Estimation in multivariate analysis (62H12) Ridge regression; shrinkage estimators (Lasso) (62J07) Linear regression; mixed models (62J05) Minimax procedures in statistical decision theory (62C20) Empirical decision procedures; empirical Bayes procedures (62C12)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On estimation of a matrix of normal means with unknown covariance matrix
- On multivariate linear regression shrinkage and reduced-rank procedures
- An identity for the Wishart distribution with applications
- Adaptive multivariate ridge regression
- Estimation of the mean of a multivariate normal distribution
- Multivariate empirical Bayes and estimation of covariance matrices
- Minimax estimators in the normal MANOVA model
- Minimax Adaptive Generalized Ridge Regression Estimators
- Predicting Multivariate Response in Linear Regression Model
- UNBIASED ESTIMATOR OF RISK FOR AN ORTHOGONALLY INVARIANT ESTIMATOR OF A COVARIANCE MATRIX
- Ridge Regression: Biased Estimation for Nonorthogonal Problems
- Robust improvement in estimation of a mean matrix in an elliptically contoured distribution
This page was built for publication: Minimax multivariate empirical Bayes estimators under multicollinearity