Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry.
From MaRDI portal
Publication:1777638
DOI10.5802/aif.2120zbMath1093.32009arXivmath/0309315OpenAlexW1663968657MaRDI QIDQ1777638
Andrei Teleman, Laurent Bruasse
Publication date: 25 May 2005
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0309315
Geometric invariant theory (14L24) Kähler manifolds (32Q15) Momentum maps; symplectic reduction (53D20) Complex Lie groups, group actions on complex spaces (32M05) Holomorphic bundles and generalizations (32L05)
Related Items (6)
STABILITY AND HERMITIAN–EINSTEIN METRICS FOR VECTOR BUNDLES ON FRAMED MANIFOLDS ⋮ Optimal destabilizing vectors in some gauge theoretical moduli problems ⋮ Stability, analytic stability for real reductive Lie groups ⋮ The Kähler-Ricci flow and optimal degenerations ⋮ A GIT interpretation of the Harder-Narasimhan filtration ⋮ A Hilbert–Mumford criterion for polystability in Kaehler geometry
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Geometric invariant theory on Stein spaces
- Special metrics and stability for holomorphic bundles with global sections
- Some remarks on the instability flag
- Hyperkähler metrics and supersymmetry
- The theorem of Grauert-Mülich-Spindler
- On the cohomology groups of moduli spaces of vector bundles on curves
- Master spaces for stable pairs
- Reduction of complex Hamiltonian \(G\)-spaces
- Harder-Narasimhan filtration for complex bundles or torsion free sheaves.
- Gauge theoretical equivariant Gromov-Witten invariants and the full Seiberg-Witten invariants of ruled surfaces
- Seifert manifolds
- A Hitchin-Kobayashi correspondence for Kähler fibrations
- HARDER–NARASIMHAN FILTRATION ON NON KÄHLER MANIFOLDS
This page was built for publication: Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry.