On radial Schrödinger operators with a Coulomb potential
DOI10.1007/s00023-018-0701-7zbMath1428.81077arXiv1712.04068OpenAlexW3098156154MaRDI QIDQ1783932
Publication date: 21 September 2018
Published in: Annales Henri Poincaré (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1712.04068
Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) (34L40) Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05) Selfadjoint operator theory in quantum theory, including spectral analysis (81Q10) (2)-body potential quantum scattering theory (81U05)
Related Items (12)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Schrödinger operators with inverse square potentials on the half-line
- Homogeneous Schrödinger operators on half-line
- Coulomb and Bessel functions of complex arguments and order
- Self-adjoint extensions in quantum mechanics. General theory and applications to Schrödinger and Dirac equations with singular potentials.
- Coulomb functions for attractive and repulsive potentials and for positive and negative energies
- Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.)
- Direct demonstration of the completeness of the eigenstates of the Schrödinger equation with local and nonlocal potentials bearing a Coulomb tail
- Deficiency indices and singular boundary conditions in quantum mechanics
- On the one-dimensional Coulomb Hamiltonian
- On the classical and quantum Coulomb scattering
- Eigenvalues of Robin Laplacians in infinite sectors
- The Confluent Hypergeometric Function
This page was built for publication: On radial Schrödinger operators with a Coulomb potential