Primitive idempotents of cyclic codes of length \(p\) and 2\(p\)
From MaRDI portal
Publication:1786982
DOI10.1007/s12190-017-1163-7zbMath1414.94937OpenAlexW2785750300MaRDI QIDQ1786982
Publication date: 25 September 2018
Published in: Journal of Applied Mathematics and Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12190-017-1163-7
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some cyclic codes of length \(2p^n\)
- Idempotents in group algebras and minimal abelian codes
- Minimal codes of prime-power length.
- Minimal cyclic codes of length \(2p^n\)
- Cyclic codes of length \(2^m\)
- Minimal cyclic codes of length \(p^{n} q\).
- The primitive idempotents of a cyclic group algebra.
- Minimal quadratic residue cyclic codes of length \(2^n\)
- Cyclotomic numbers and primitive idempotents in the ring \(\mathrm{GF}(q)[x/(x^{p^n} - 1)\)]
- Cyclotomy and duadic codes of prime lengths
This page was built for publication: Primitive idempotents of cyclic codes of length \(p\) and 2\(p\)