Nonlinear harmonic analysis of integral operators in weighted grand Lebesgue spaces and applications
DOI10.1215/20088752-2017-0056zbMath1400.42010OpenAlexW2786666144MaRDI QIDQ1790506
Alberto Fiorenza, Vakhtang Kokilashvili
Publication date: 2 October 2018
Published in: Annals of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.afa/1517886227
Riemann boundary value problemCauchy singular integral operatorCalderón-Zygmund singular integralsCarleson curveMuckenhoupt \(A_{p}\) class
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Grand Lebesgue spaces with respect to measurable functions
- Grand Sobolev spaces and their applications in geometric function theory and PDEs
- Integral operators in non-standard function spaces. Volume 2: Variable exponent Hölder, Morrey-Campanato and Grand spaces
- Weighted Hardy spaces
- On the integrability of the Jacobian under minimal hypotheses
- Inverting the \(p\)-harmonic operator
- Carleson curves, Muckenhoupt weights, and Toeplitz operators
- Pointwise estimates for \(G\Gamma\)-functions and applications.
- Some estimates in \(G\Gamma (p,m,w)\) spaces
- Cauchy integrals on Lipschitz curves and related operators
- Sobolev imbedding theorems in borderline cases
This page was built for publication: Nonlinear harmonic analysis of integral operators in weighted grand Lebesgue spaces and applications