Uniform boundedness of Kantorovich operators in Morrey spaces
DOI10.1007/s11117-018-0561-xOpenAlexW2792620592MaRDI QIDQ1791100
Yoshihiro Sawano, Arash M. Ghorbanalizadeh, Victor I. Burenkov
Publication date: 4 October 2018
Published in: Positivity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11117-018-0561-x
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Approximation by polynomials (41A10) Rate of convergence, degree of approximation (41A25) Operators on real function spaces (47B92)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Interpolation of generalized Morrey spaces
- Erratum to: ``Multipliers and Morrey spaces
- Dual properties of Triebel-Lizorkin-type spaces and their applications
- Calderón's first and second complex interpolations of closed subspaces of Morrey spaces
- Interpolation of Morrey-Campanato and related smoothness spaces
- Corrigenda to ``Unique continuation for Schrödinger operators and a remark on interpolation of Morrey spaces
- Multipliers and Morrey spaces
- Hybrid function spaces, heat and Navier-Stokes equations
- COMPLEX INTERPOLATION ON BESOV-TYPE AND TRIEBEL–LIZORKIN-TYPE SPACES
- Approximation by Bernstein Polynomials
- $L^p$-convergence of Bernstein-Kantorovich-type operators
- On the Solutions of Quasi-Linear Elliptic Partial Differential Equations