The average rank of elliptic curves. I. (With an appendix by Oisín McGuinness: The explicit formula for elliptic curves over function fields)
DOI10.1007/BF01232033zbMath0783.14019WikidataQ61440673 ScholiaQ61440673MaRDI QIDQ1803375
Publication date: 29 June 1993
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/144027
heightHasse-Weil \(L\)-functionsBirch--Swinnerton-Dyer conjectureTaniyama-Weil conjectureaverage analytic rank of elliptic curvesranks of the Mordell-Weil groups
Elliptic curves over global fields (11G05) Elliptic curves (14H52) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Arithmetic varieties and schemes; Arakelov theory; heights (14G40) Algebraic functions and function fields in algebraic geometry (14H05)
Related Items
Cites Work
- The canonical height and integral points on elliptic curves
- Dirichlet series and automorphic forms
- L'ensemble exceptionnel dans la conjecture de Szpiro
- The behavior of the Mordell-Weil group of elliptic curves
- On the Analogue of the Modular Group in Characteristic p
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item