On universal norms in \(\mathbb{Z}_ p\)-extensions
From MaRDI portal
Publication:1805354
DOI10.5802/jtnb.112zbMath0833.11051OpenAlexW2332885944MaRDI QIDQ1805354
Publication date: 17 March 1996
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1994__6_2_205_0
Galois descentuniversal normsgroup of \(p\)-unitsexistence of a norm maprank on \(\mathbb{Z}_ p\)-extensions
Related Items (11)
\(K_2\) and the Greenberg conjecture in multiple \(\mathbb Z_p\)-extensions ⋮ Iwasawa theory of Rubin-Stark units and class groups ⋮ On the cyclotomic norms and the Leopoldt and Gross-Kuz'min conjectures ⋮ Normes universelles et conjecture de Greenberg ⋮ Unnamed Item ⋮ On formulas for the index of the circular distributions ⋮ On universal norms and the first layers of \(\mathbb Z_p\)-extensions of a number field ⋮ On duality and Iwasawa descent ⋮ On the Galois structure of circular units in \(\mathbb{Z}_p\)-extensions ⋮ Théorie d’Iwasawa des unités de Stark et groupe de classes ⋮ On universal norms for $p$-adic representations in higher-rank Iwasawa theory
Cites Work
- On the structure of the \(K_ 2\) of the ring of integers in a number field
- On the Stickelberger ideal and the circular units of an abelian field
- Regulators and Iwasawa modules
- Cyclotomic units in \(\mathbb{Z}_p\)-extensions
- On a construction of \(p\)-units in abelian fields
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- An idelic approach to the wild kernel
- Galois descent and \(K_ 2\) of number fields
- On \(K_2\) and some classical conjectures in algebraic number theory
- The indecomposable $K_3$ of fields
- THE GROUP $ K_3$ FOR A FIELD
- THE TATE MODULE FOR ALGEBRAIC NUMBER FIELDS
- Unnamed Item
- Unnamed Item
This page was built for publication: On universal norms in \(\mathbb{Z}_ p\)-extensions