Lower bound for the derivative in the point 1 of the \(L\)-function attached to an elliptic curve of Weil
From MaRDI portal
Publication:1805358
DOI10.5802/jtnb.116zbMath0826.11028OpenAlexW2314289105MaRDI QIDQ1805358
Publication date: 28 November 1995
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1994__6_2_281_0
Elliptic curves (14H52) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Heegner points and derivatives of \(L\)-series
- The canonical height and integral points on elliptic curves
- Sur les coefficients de Fourier des formes modulaires de poids demi-entier
- Lower bound for the canonical height on elliptic curves
- The arithmetic of elliptic curves
- Elliptic functions and transcendence
- Hecke operators on \(\Gamma_0(m)\)
- Courbes de Weil semi-stables de discriminant une puissance m-ième.
- On construction of holomorphic cusp forms of half integral weight
- CYCLOTOMIC FIELDS AND MODULAR CURVES