The structure of chaos in a potential without escapes
From MaRDI portal
Publication:1805475
DOI10.1007/BF00693324zbMath0820.58041MaRDI QIDQ1805475
H. Papadaki, C. Polymilis, George Contopoulos
Publication date: 11 September 1995
Published in: Celestial Mechanics and Dynamical Astronomy (Search for Journal in Brave)
stabilitychaosperiodic orbitsHamiltonian systemasymptotic curvesheteroclinic pointshomoclinic points
Strange attractors, chaotic dynamics of systems with hyperbolic behavior (37D45) Local and nonlocal bifurcation theory for dynamical systems (37G99)
Related Items (7)
Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry ⋮ Numerical exploration of the dynamics of self-adjoint S-type Riemann ellipsoids ⋮ Dynamics aspects in a galactic type Hamiltonian ⋮ Symmetric periodic solutions of symmetric Hamiltonians in 1 : 1 resonance ⋮ Analytical invariant manifolds near unstable points and the structure of chaos ⋮ Periodic orbits and nonintegrability of generalized classical Yang–Mills Hamiltonian systems ⋮ Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6
Cites Work
- Unnamed Item
- Quasi-Elliptic Periodic Points in Conservative Dynamical Systems
- Existence of stable orbits in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>potential
- Fractal dimension in nonhyperbolic chaotic scattering
This page was built for publication: The structure of chaos in a potential without escapes