Optimal-by-order quadrature formulae for fast oscillatory functions with inaccurately given a priori information
From MaRDI portal
Publication:1807765
DOI10.1016/S0377-0427(99)00195-8zbMath0940.65022MaRDI QIDQ1807765
K. N. Melnik, Roderick V. Nicholas Melnik
Publication date: 19 July 2000
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
numerical examplesresidual methodfast oscillatory functionsmethod fo quasi-solutionsoptimal-by-order quadrature formulae
Related Items (3)
Approximation of multiple integrals by simple integrals involving periodic functions ⋮ Optimal minimax algorithm for integrating fast oscillatory functions in two dimensions ⋮ Optimal-by-accuracy and optimal-by-order cubature formulae in interpolational classes
Cites Work
- Numerical evaluation of finite Fourier integrals
- Optimal accuracy approximation of functions and their derivatives
- Algorithm for the computation of Bessel function integrals
- Optimally exact algorithm for solution of a certain numerical integration problem
- Optimization of approximate integration of rapidly oscillating functions
- On high precision methods for the evaluation of Fourier integrals with finite and infinite limits
- Minimax models in the theory of numerical methods. Transl. from the 1989 Russian orig. by Olga Chuyan
- On an algorithm for the fast Fourier-Bessel transform
- Fast integration of rapidly oscillatory functions
- Numerical Evaluation of Certain Oscillatory Integrals
- Fourier or Bessel transformations of highly oscillatory functions
- Numerical calculation of fourier integrals with cubic splines
- A Modification of Filon's Method of Numerical Integration
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Optimal-by-order quadrature formulae for fast oscillatory functions with inaccurately given a priori information