Knot theory and its applications: Expository articles on current research
From MaRDI portal
Publication:1809537
DOI10.1016/S0960-0779(97)00107-0zbMath0935.00021OpenAlexW2017626237MaRDI QIDQ1809537
No author found.
Publication date: 26 April 2000
Published in: Chaos, Solitons and Fractals (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0960-0779(97)00107-0
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (5)
The golden mean in quantum geometry, knot theory and related topics ⋮ Knot theory in \(\mathbb{R}^4\) and the Hausdorff dimension of a quantum path in \({\mathcal E}^{(\infty)}\) ⋮ COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime. ⋮ A Survey of the Impact of Thurston’s Work on Knot Theory ⋮ A generalization of Lotka-Volterra, GLV, systems with some dynamical and topological properties
Cites Work
- The classification of alternating links
- Classification of knot projections
- A polynomial invariant for unoriented knots and links
- A spanning tree expansion of the Jones polynomial
- State models and the Jones polynomial
- Jones polynomials and classical conjectures in knot theory
- Hecke algebra representations of braid groups and link polynomials
- Quantum field theory and the Jones polynomial
- State sum invariants of 3-manifolds and quantum \(6j\)-symbols
- Invariants of 3-manifolds via link polynomials and quantum groups
- Über Simony-Knoten und Simony-Ketten mit vorgeschriebenen singulären Primzahlen für die Figur und für ihr Spiegelbild
- Obituary Hermann Brunn
- QUANTUM INVARIANTS OF 3-MANIFOLDS ASSOCIATED WITH CLASSICAL SIMPLE LIE ALGEBRAS
- A polynomial invariant for knots via von Neumann algebras
- A new polynomial invariant of knots and links
- On Knots. (AM-115)
- Invariants of links of Conway type
- Knots are determined by their complements
- The Tait flyping conjecture
- An Invariant of Regular Isotopy
- On the Classification of Knots
- Knots
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Knot theory and its applications: Expository articles on current research