On the convergence of solutions of singularly perturbed boundary value problems for the Laplacian.
From MaRDI portal
Publication:1810142
DOI10.1023/A:1015820928854zbMath1130.35306OpenAlexW169196864MaRDI QIDQ1810142
Publication date: 15 June 2003
Published in: Mathematical Notes (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1023/a:1015820928854
Boundary value problems for second-order elliptic equations (35J25) Singular perturbations in context of PDEs (35B25)
Related Items (8)
Discrete spectrum of the Schrödinger operator perturbed by a narrowly supported potential ⋮ On the convergence of solutions and eigenelements of a boundary value problem in a domain perforated along the boundary ⋮ Asymptotic analysis of boundary-value problems for the Laplace operator with frequently alternating type of boundary conditions ⋮ Perturbation of the Steklov problem on a small part of the boundary ⋮ Asymptotic expansion of eigenelements of the Laplace operator in a domain with a large number of ‘light’ concentrated masses sparsely situated on the boundary. Two-dimensional case ⋮ Asymptotics of the eigenvalues of the Dirichlet-Laplace problem in a domain with thin tube excluded ⋮ On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems ⋮ Asymptotic expansion of eigenvalues of the Laplace operator in domains with singularly perturbed boundary
This page was built for publication: On the convergence of solutions of singularly perturbed boundary value problems for the Laplacian.