Numerical method of lines for first order partial differential-functional equations
DOI10.4171/ZAA/1119zbMath1030.65098MaRDI QIDQ1811432
A. Baranowska, Zdzisław Kamont
Publication date: 8 February 2004
Published in: Zeitschrift für Analysis und ihre Anwendungen (Search for Journal in Brave)
stabilityconvergenceCauchy problemnumerical examplesHaar pyramidpartial functional-differential equationcomparision techniquedifferential-difference inequalitiesdifferential-integral equationssystem of ordinary functional-differential equations
Numerical methods for integral equations (65R20) Partial functional-differential equations (35R10) Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs (65M12) Method of lines for initial value and initial-boundary value problems involving PDEs (65M20)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uniqueness result for the generalized entropy solutions to the Cauchy problem for first-order partial differential-functional equations
- Ein Existenzbeweis für nichtlineare parabolische Differentialgleichungen aufgrund der Linientheorie
- Existence and convergence theorems for the boundary layer equations based on the line method
- Sur le problème de Cauchy pour les systèmes d'équations aux dérivées partielles du premier ordre dans les cas hyperbolique de deux variables indépendantes
- Existence, Uniqueness, and Numerical Analysis of Solutions of a Quasilinear Parabolic Problem
- Existence of solutions of a nonlinear boundary value problem via the method of lines
- Convergence of the lines method for first‐order partial differential‐functional equations
- On the local Cauchy problem for Hamilton Jacobi equations with a functional dependence
This page was built for publication: Numerical method of lines for first order partial differential-functional equations