Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Weyl quantization of symmetric spaces. I: Hyperbolic matrix domains

From MaRDI portal
Publication:1814177
Jump to:navigation, search

DOI10.1016/0022-1236(91)90064-CzbMath0736.47014MaRDI QIDQ1814177

Harald Upmeier

Publication date: 25 June 1992

Published in: Journal of Functional Analysis (Search for Journal in Brave)


zbMATH Keywords

invariant measurebounded symmetric domainsymbol functionhyperbolic matrix ballbounded Hilbert space operatorunitary representation of the group of symmetriesWeyl quantization formula


Mathematics Subject Classification ID

Functional calculus for linear operators (47A60) Integral operators (47G10) Nonassociative selfadjoint operator algebras (46L70)


Related Items

QUANTIZATION METHODS: A GUIDE FOR PHYSICISTS AND ANALYSTS, Weyl transforms on the upper half plane



Cites Work

  • A quantization of the Cartan domain BD I \((q=2)\) and operators on the light cone
  • Spherical functions and invariant differential operators on complex Grassmann manifolds
  • Jordan pairs
  • Analytic continuation of the holomorphic discrete series of a semi-simple Lie group
  • Function spaces and reproducing kernels on bounded symmetric domains
  • La série discrète de ${\rm SL}(2,\,{R})$ et les opérateurs pseudo-différentiels sur une demi-droite
  • The weyl calculus of pseudo-differential operators
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1814177&oldid=12000656"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 00:22.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki