Some estimates for the normal structure coefficient in Banach spaces
From MaRDI portal
Publication:1814412
DOI10.1007/BF02846365zbMath0757.46029OpenAlexW2056941090MaRDI QIDQ1814412
Publication date: 25 June 1992
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02846365
Related Items
On some geometric parameters in Banach spaces ⋮ The characteristic of convexity of a Banach space and normal structure ⋮ Random fixed point theorems for a certain class of mappings in banach spaces ⋮ Banach spaces which are dual to \(k\)-uniformly convex spaces ⋮ Fixed points of nonexpansive mappings ⋮ Fixed points of a pair of asymptotically regular mappings ⋮ On the existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces. ⋮ Modulus of convexity, the coefficient \(R(1,X)\), and normal structure in Banach spaces ⋮ Does Kirk's theorem hold for multivalued nonexpansive mappings? ⋮ James constant for interpolation spaces ⋮ On the modulus of \(W^{\ast}\)-convexity ⋮ Unnamed Item ⋮ Banas-Hajnosz-Wedrychowicz type modulus of convexity and normal structure in Banach spaces ⋮ Some modulus and normal structure in Banach space ⋮ The implicit midpoint procedures for asymptotically nonexpansive mappings ⋮ The exact value of normal structure coefficients in a class of Orlicz sequence spaces
Cites Work
- The modulus of convexity in normed linear spaces
- On Jung's constant and related constants in normed linear spaces
- La propriété du point fixe dans les espaces de Banach avec base inconditionelle. (The fixed point properties in Banach spaces with unconditional bases)
- Normal structure coefficients for Banach spaces
- Uniformly normal structure and related coefficients
- Uniformly non-square Banach spaces
- Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure
- On two classes of Banach spaces with uniform normal structure
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item