Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Solvable Lie foliations

From MaRDI portal
Publication:1814964
Jump to:navigation, search

DOI10.5802/afst.812zbMath0867.57023OpenAlexW2334059583MaRDI QIDQ1814964

Gaël Meigniez

Publication date: 3 November 1996

Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)

Full work available at URL: http://www.numdam.org/item?id=AFST_1995_6_4_4_801_0


zbMATH Keywords

holonomy groupshomogeneous foliations


Mathematics Subject Classification ID

Nilpotent and solvable Lie groups (22E25) Foliations in differential topology; geometric theory (57R30)


Related Items (3)

A compactly generated pseudogroup which is not realizable ⋮ Lie foliations transversely modeled on nilpotent Lie algebras ⋮ Rigidity of the Álvarez class



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • The Lie affine foliations on 4-manifolds
  • Riemannian foliations. With appendices by G. Cairns, Y. Carrière, E. Ghys, E. Salem, V. Sergiescu
  • Transversely homogeneous foliations
  • On a problem of Philip Hall
  • Guppen mit Poincaré-Dualität
  • Foliated manifolds with bundle-like metrics
  • Factor spaces of solvable groups
  • A Sufficient Condition that a Mapping of Riemannian Manifolds be a Fibre Bundle
  • Valuations and Finitely Presented Metabelian Groups
  • Lie Flows of Codimension 3




This page was built for publication: Solvable Lie foliations

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1814964&oldid=30840513"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 13 March 2024, at 14:46.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki