A generalization of Verma modules, and irreducible representations of the Lie algebra sl(3)
From MaRDI portal
Publication:1820225
DOI10.1007/BF01057302zbMath0614.17005WikidataQ115394511 ScholiaQ115394511MaRDI QIDQ1820225
Publication date: 1986
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Simple, semisimple, reductive (super)algebras (17B20) Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) (22E47)
Related Items
A new category of lie algebra modules satisfying the bgg reciprocity principle ⋮ On the structure of an \(\alpha\)-stratified generalized Verma module over Lie algebra \(sl(n, \mathbb{C})\) ⋮ Generalized Verma modules over \(U_q(\mathfrak{sl}_n(\mathbb{C}))\) ⋮ Simple A2-modules with a finite dimensional weight space ⋮ Gelfand-Tsetlin modules over \(\mathfrak{gl}(n)\) with arbitrary characters ⋮ Simple \(\mathfrak{sl}_{n + 1}\)-module structures on \(\mathcal{U}(\mathfrak{h})\) ⋮ Generalized verma modules over the lie algebra of typeG2 ⋮ Classification of simple Gelfand–Tsetlin modules of 𝔰𝔩(3)
Cites Work
This page was built for publication: A generalization of Verma modules, and irreducible representations of the Lie algebra sl(3)