Representation and approximation of functions via (0,2)-interpolation
From MaRDI portal
Publication:1820337
DOI10.1016/0021-9045(87)90001-3zbMath0614.41001OpenAlexW1974021918MaRDI QIDQ1820337
R. Gervais, Gerhard Schmeisser, Qazi Ibadur Rahman
Publication date: 1987
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(87)90001-3
Interpolation in approximation theory (41A05) Approximation by other special function classes (41A30) Representations of entire functions of one complex variable by series and integrals (30D10) Special classes of entire functions of one complex variable and growth estimates (30D15)
Related Items (4)
A sampling theorem with nonuniform complex nodes ⋮ Quadrature formulae using zeros of Bessel functions as nodes ⋮ A Quadrature Formula Involving Zeros of Bessel Functions ⋮ Sur une formule de quadrature pour des fonctions entières
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Approximation by (0,2)-interpolating entire functions of exponential type
- Notes on interpolation. II
- Notes on interpolation. III (convergence)
- Bemerkung über die Konvergenz eines Interpolationsverfahrens von P. Turán
- Notes on interpolation. IV (inequalities)
- О Тригонометрическом (0, 2)-Интерполировании
- An Extension of Carlson's Theorem for Entire Functions of Exponential Type
- Notes on interpolation. I. (On some interpolatorical properties of the ultraspherical polynomials)
- On the role of the Lebesgue functions in the theory of the Lagrange interpolation
This page was built for publication: Representation and approximation of functions via (0,2)-interpolation