Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Holomorphic germs on certain locally convex spaces

From MaRDI portal
Publication:1820355
Jump to:navigation, search

DOI10.1007/BF01760808zbMath0614.46017MaRDI QIDQ1820355

Roberto Luiz Soraggi

Publication date: 1986

Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)


zbMATH Keywords

bounded sets in the space of holomorphic germs defined on compact subsets of non-metrizable locally convex spacesexistence of uniform Cauchy estimatesreflexive dual Fréchet space


Mathematics Subject Classification ID

Infinite-dimensional holomorphy (46G20) Topological linear spaces of continuous, differentiable or analytic functions (46E10) Locally convex Fréchet spaces and (DF)-spaces (46A04)


Related Items (1)

Locally Bounded Sets of Holomorphic Mappings




Cites Work

  • Extendibility, boundedness and sequential convergence in spaces of holomorphic functions
  • Bemerkungen zum Satz über die Separabilität der Frechet-Montel- Räume
  • Holomorphy on spaces of distributions
  • Sur les modules topologiques
  • Analytic functionals on fully nuclear spaces
  • Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item




This page was built for publication: Holomorphic germs on certain locally convex spaces

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1820355&oldid=14181594"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 09:44.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki