Universal non-compact operators between super-reflexive Banach spaces and the existence of a complemented copy of Hilbert space
From MaRDI portal
Publication:1821301
DOI10.1007/BF02776075zbMath0616.46019OpenAlexW2028506924MaRDI QIDQ1821301
Publication date: 1985
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02776075
Classical Banach spaces in the general theory (46B25) Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators (47A68)
Related Items (2)
Functional calculus under the Tadmor--Ritt condition, and free interpolation by polynomials of a given degree ⋮ Non-Asplund Banach spaces and operators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On uncomplemented subspaces of \(L_p\), \(1<p<2\)
- Martingales with values in uniformly convex spaces
- On subspaces of Banach spaces without quasi-complements
- Semigroups of operators and measures of noncompactness
- Banach spaces which can be given an equivalent uniformly convex norm
- Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert
- s-Numbers of operators in Banach spaces
- A universal non-compact operator
- Note on a theorem of Murray
This page was built for publication: Universal non-compact operators between super-reflexive Banach spaces and the existence of a complemented copy of Hilbert space