The global homological dimension of the ring of differential operators on a nonsingular variety over a field of positive characteristic
From MaRDI portal
Publication:1821821
DOI10.1016/0021-8693(87)90076-7zbMath0617.13007OpenAlexW2149652144MaRDI QIDQ1821821
Publication date: 1987
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(87)90076-7
Homological dimension and commutative rings (13D05) Varieties and morphisms (14A10) Regular local rings (13H05)
Related Items (10)
The $D$–module structure of $R[F$–modules] ⋮ Über Differentialoperatoren und \({\mathcal D}\)-Moduln in positiver Charakteristik. (On differential operators and \({\mathcal D}\)- modules in positive characteristic) ⋮ Bernstein–Sato functional equations, V-filtrations, and multiplier ideals of direct summands ⋮ Bernstein-Sato Polynomials in Commutative Algebra ⋮ On direct and inverse images of \(\mathcal D\)-modules in prime characteristic ⋮ \(D\)-modules, Bernstein-Sato polynomials and \(F\)-invariants of direct summands ⋮ The total symbol theorem of a \(p\)-adic differential operator ⋮ Non-commutative resolutions of toric varieties ⋮ The total symbol theorem of a \(p\)-adic differential echelon operator \(h\geq 0\) ⋮ On a theory of the \(b\)-function in positive characteristic
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Affine Hopf algebras. I
- Krull and Global Dimensions of Fully Bounded Noetherian Rings
- On the Dimension of Modules and Algebras (III): Global Dimension
- On the Dimension of Modules and Algebras IX: Direct Limits
- Decomposing Overrings
- On the Homological Dimension of Algebras of Differential Operators
This page was built for publication: The global homological dimension of the ring of differential operators on a nonsingular variety over a field of positive characteristic