Consistency for least squares regression estimators with infinite variance data
From MaRDI portal
Publication:1822869
DOI10.1016/0378-3758(89)90087-6zbMath0679.62054OpenAlexW2062854175MaRDI QIDQ1822869
Publication date: 1989
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0378-3758(89)90087-6
regular variationweak consistencyinfinite variancemultiple regressionleast squares estimatorsstable domain of attractionrandom predictors
Related Items (8)
Optimal kernel estimation of densities ⋮ Stable Autoregressive Models and Signal Estimation ⋮ On consistency of the least squares estimators in linear errors-in-variables models with infinite variance errors ⋮ Functional central limit theorems for self-normalized least squares processes in regression with possibly infinite variance data ⋮ Abelian and Tauberian theorems relating the local behavior of an integrable function to the tail behavior of its Fourier transform ⋮ Testing for (in)finite moments ⋮ Least tail-trimmed squares for infinite variance autoregressions ⋮ Subexponentiality of the product of independent random variables
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Limit theory for moving averages of random variables with regularly varying tail probabilities
- More limit theory for the sample correlation function of moving averages
- Convolution tails, product tails and domains of attraction
- Limit theory for the sample covariance and correlation functions of moving averages
- Joint stable attraction of two sums of products
- Asymptotic behavior of least-squares estimates for autoregressive processes with infinite variances
- An asymptotic theory for weighted least-squares with weights estimated by replication
- Asymptotic behavior of general M-estimates for regression and scale with random carriers
- A Theorem on Products of Random Variables, With Application to Regression
- Regression and autoregression with infinite variance
- Autoregressive processes with infinite variance
- A uniform weak law of large numbers under π‐mixing with application to nonlinear least squares estimation
- Correction
- End-of-Sample Instability Tests
- Robust Statistics
This page was built for publication: Consistency for least squares regression estimators with infinite variance data